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ABSTRACT

We study the chaotic dynamics of graphene structures, considering both a periodic, defect free, graphene sheet and graphene nanoribbons
(GNRs) of various widths. By numerically calculating the maximum Lyapunov exponent, we quantify the chaoticity for a spectrum of energies
in both systems. We find that for all cases, the chaotic strength increases with the energy density and that the onset of chaos in graphene is
slow, becoming evident after more than 104 natural oscillations of the system. For the GNRs, we also investigate the impact of the width
and chirality (armchair or zigzag edges) on their chaotic behavior. Our results suggest that due to the free edges, the chaoticity of GNRs
is stronger than the periodic graphene sheet and decreases by increasing width, tending asymptotically to the bulk value. In addition, the
chaotic strength of armchair GNRs is higher than a zigzag ribbon of the same width. Furthermore, we show that the composition of 12C and
13C carbon isotopes in graphene has a minor impact on its chaotic strength.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0007761

In spite of the significance of graphene dynamics in determin-
ing a number of structural, conformational, thermal, and vibra-
tional characteristics of the well studied nanomaterial, which is
known to exhibit exceptional properties, a detailed investiga-
tion of its chaotic behavior is missing. Using a realistic, specifi-
cally designed, Hamiltonian for the description of the stretching
of covalent bonds and the angle bending in planar graphenes,
derived through accurate calculations from first principles and
tested against available experimental data of graphene’s mechan-
ical response, we examine the maximum Lyapunov exponent of
two-dimensional bulk graphene as well as of graphene nanorib-
bons. In the former case, the dependence of this chaos index
on the energy of graphene is calculated, revealing a quadratic
variation. In the latter case, the dependence of the maximum Lya-
punov exponent for both armchair and zigzag nanoribbons on
the ribbon width is presented for various energies, and the cor-
responding results are quantified by a simple analytical function.

I. INTRODUCTION

Graphene is a defect free single layer of graphite.1 It can be
considered as the basic building block of most carbon nanoma-
terials such as graphene nanoribbons (GNRs), carbon nanotubes
(CNTs), and fullerenes among others. Experimental studies suggest
that graphene carries exceptional physical properties2–4 including
superior electron mobility,5,6 thermal conductivity,7,8 and mechan-
ical characteristics.9–13 Consequently, it is thought of as a serious
candidate for next generation electrodes,14 sensors,15,16 resonators,17

transistors,18,19 and supercapacitors.20 With its flexibility, graphene
sheets can also be used as an artificial membrane in biomedical
research. Functionalized graphene derivatives open even larger hori-
zons of applications—for example, applications to drug delivery
processes of complex diseases.21 As such, there is clearly ample
motivation for studying various properties of graphene.

Aside from the active experimental research on the diverse
applications mentioned above, graphene dynamics can be used in
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order to better understand its mechanical and structural properties.
Over the past few decades, the theoretical investigation of graphene
structural properties has resulted in numerous works using primar-
ily molecular dynamics (MD) simulations. The impact of geomet-
rical factors on graphene’s conformation has been investigated by
MD,22 as well as the effects of different kinds of defects on the
spontaneous formation of various graphene nanostructures, rang-
ing from GNRs and nanoscrolls23 to CNTs,24 nanocages,25 and other
exotic nanomaterials.26

Quantitative analysis of the thermal conductivity, which is an
important aspect, is also the subject of extensive study using MD.27–37

For GNRs, it has been found that the thermal conductivity increases
with their length27,35 and decreases with both tensile or compres-
sive uniaxial strain,27 while it seems to be insensitive to bending or
twisting deformations.35 In addition, MD simulations have shown
that rough edges38 and vacancies39 significantly reduce the thermal
conductivity of a GNR. MD has been further used to examine other
thermal properties of graphene, like its thermal expansion.40

Phonons in graphene have also been analyzed by MD calcula-
tions. In particular, it has been shown that the phonon dispersion
curves of graphene can be obtained at any temperature through the
dynamical trajectories of the system.41 The phonon frequency vari-
ation with temperature for particular Raman active modes has also
been computed.41,42 Furthermore, the strain dependence of the same
phonon of interest (E2g mode) has been dynamically calculated.43 In
addition, phonon lifetimes of various optical or acoustic modes were
obtained using MD.44

Concerning the mechanical response of graphene, various elas-
tic parameters, such as the Young modulus, bulk modulus, Poisson
ratio, shear modulus, fracture toughness, and critical compressive
buckling, have been calculated using MD.45–50 The reported val-
ues of the Young modulus are in agreement with the experimen-
tal estimates,9 demonstrating the exceptional mechanical proper-
ties of graphene. GNRs’ Young modulus (Poisson ratio) increases
(decreases) with their size45 regardless of the chirality (zigzag or arm-
chair). Their Young modulus drops with increased concentration of
vacancies.51 MD simulations show that GNRs under uniaxial com-
pression exhibit a critical buckling stress, which decreases with the
length, while it increases with the width approaching a limiting value
at relatively large widths.52

To the best of our knowledge, there are no studies that have
been done regarding the calculation of the maximum Lyapunov
exponent (MLE) or other types of chaos indicators53 for graphene
models, although there is a fundamental interest in understand-
ing the underlying dynamics and the characteristics of chaos in
this material. In this work, we assess the stability of a graphene
system by computing its MLE. The MLE has a significant num-
ber of applications in complex systems,54,55 such as, for example,
in detecting phase transitions of matter and, therefore, serving as
a dynamical order parameter. For instance, in DNA chains, the
MLE acts as a dynamical indicator of the phase transition near
denaturation.56,57 In practice, for the graphene shell, MLE compu-
tations could help to detect a threshold above which fractures and
deformations appear, as well as to potentially assess the stability of
nanomaterials obtained through controllable defect engineering. In
our study, we focus on planar graphene sheets and GNRs, model-
ing the interatomic interactions using a simple graphene-specific

two-dimensional Hamiltonian model, which takes into account
anharmonic effects.48 The used force fields describe bond stretching
and angle bending interactions, constituting the two-dimensional
part of a complete atomistic potential of graphene that has been
derived through accurate calculations from first principles.58,59 It
has been shown that the obtained in-plane dynamics accurately
describes graphene’s mechanical properties.48 We provide a detailed
investigation of the chaoticity of graphene and GNRs through
numerical calculations of the system’s MLE. In particular, we
present the energy dependence of the MLE for periodic graphene,
while for GNRs, we discuss the width dependence and the effect of
the chirality (armchair or zigzag edges) on the chaotic behavior.

The paper is organized as follows. In Sec. II, we outline the
structure of graphene, the model used, and the computational and
numerical tools applied to the problem. In Sec. III, we discuss the
results of our numerical simulations. Finally, in Sec. IV, we summa-
rize the main outcomes of our study and discuss the future outlook
of our work.

II. HAMILTONIAN MODEL AND COMPUTATIONAL

ASPECTS

A. Graphene lattice

The studied graphene structure at equilibrium is shown in
Fig. 1(a). This arrangement gives rise to the graphene structure’s
characteristic honeycomb-like cell shape. Each atom has three
neighbors with the distance between two neighboring carbons
r0 = 0.142 nm and the angle made by three consecutive carbons
φ0 = 2π/3 rad at equilibrium.48

Along the ith vertical zigzag chain shown in Fig. 1(a), the Ci,j

carbon atom (where the second index j is numbering its position
along the considered ith zigzag chain) shares one of its chemical
bonds with either the i − 1 zigzag chain to its left, when i + j is
an even integer [Fig. 1(b)] or the i + 1 zigzag chain in its right if
i + j is odd [Fig. 1(c)]. To calculate the position vector in the two-

dimensional plane ri,j =
(

xi,j, yi,j

)T
with T denoting the transpose, of

a carbon Ci,j at equilibrium, which belongs to the ith zigzag chain
and having the jth position along the chain, we use
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Here, r1,1 = (0, 0)T is considered as the origin of our cartesian coor-
dinate system. We define the vector pointing from the carbon atom
Ci,j to Ck,l as r

k,l
i,j = (xk,l − xi,j, yk,l − yi,j)

T, and the angle between three
neighboring atoms Ci,j, Ck,l, and Cm,n is denoted as i,jφ

m,n
k,l . This angle

is centered at the point (i, j) and is considered in an anticlock-
wise manner such that tan

(

i,jφ
m,n
k,l

)

= ‖r
k,l
i,j ∧ r

m,n
i,j ‖/r

k,l
i,j · r

m,n
i,j , where

r
k,l
i,j ∧ r

m,n
i,j and r

k,l
i,j · r

m,n
i,j are, respectively, the usual wedge and dot

product, with ‖·‖ being the usual Euclidean norm. Through these
definitions, we obtain the graphene’s geometrical description in a
cartesian coordinate system where the calculations are straightfor-
ward.
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FIG. 1. (a) Hexagonal structure of the graphene sheet. Each vertical zigzag chain
is labeled by an index i and the position along the chain labeled by an index j. Here,
for example, the ith zigzag chain is highlighted in light red, and the jth atom in each
chain is highlighted with light green. The atom at the index (i, j) is shown in dark
blue. The two lower panels show the two possible cases with regard to the location
of neighboring atoms. Case (b) corresponds to i + j being an even integer (see

the text), and φ1 would be labeled as i,jφ
i−1,j

i,j+1 . Case (c) corresponds to i + j being

odd, and here, φ1 would be labeled as i,jφ
i,j+1

i+1,j .

B. Governing equations and computational aspects

A displacement of an atom from its equilibrium position influ-
ences two potential energy terms in our two-dimensional force field.
The stretching of a covalent carbon–carbon bond is modeled via the
Morse potential function,48

Vs

(

rk,l
i,j

)

= D

[

e
−a(rk,l

i,j −r0) − 1

]2

, (2)

where a = 1.96 Å
−1

is a constant such that its inverse is a charac-
teristic length, D = 5.7 eV, i.e., the depth of the potential, and r0

is the equilibrium distance between two carbon atoms. In addition,
the bending of the angle created by three neighboring carbon atoms
induces a potential energy,48
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where d = 7.0 eV/rad2 and d′ = 4 eV/rad3 are the elastic and non-
linear parameters, respectively. In Eq. (3), φ0 is the equilibrium
angle. Consequently, we write the expression of the Hamiltonian

function (or the energy of the system) as
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where mi,j is the mass of the carbon atom at the site (i, j). For the
carbon isotope 12C, the mass is taken to be 12.0 amu, while for 13C,
we are using 13.0 amu. Furthermore, in Hamiltonian (4), the second
summation accounts all the atoms where i + j is even [Fig. 1(b)] and
the third summation accounts for those where i + j is odd [Fig. 1(c)].
Using the Hamiltonian formalism, we find the equations of motion
governing the evolution of Ci,j in the cartesian coordinate system,

mi,j
d2xi,j

dt2
= −

∂H

∂xi,j
, mi,j

d2yi,j

dt2
= −

∂H

∂yi,j
. (5)

The expressions in Eq. (5) are rather cumbersome since one has to
take into consideration the orientation and the list of neighbors of a
given carbon atom. Note that the equations of motion (5) conserve
the total energy of the system H (4).

A small deviation from a trajectory in the phase space S

has as coordinates the perturbations δxi,j, δyi,j, δẋi,j, and δẏi,j.
The displacements are measured in Å and the velocities in Å/ps.
This deviation vector evolves according to the so-called varia-
tional equations.54,60 However, due to the highly complex equa-
tions of motion, the explicit writing of the variational equations
is a very hard task. For this reason, in order to compute the sys-
tem’s MLE, we implement the so-called two-particle method,61,62

which consists of using the equations of motion (5) to integrate
an orbit with initial condition X(0) = (xi,j(0), yi,j(0), ẋi,j(0), ẏi,j(0))
along with a perturbed nearby orbit X

′(0) = (xi,j(0) + δxi,j(0), yi,j(0)
+ δyi,j(0), ẋi,j(0) + δẋi,j(0), ẏi,j(0) + δẏi,j(0)). The deviation vector
v(t) at any time t of the evolution is thus obtained as v(t) = X

′(t)
− X(t). We then measure the averaged rate of exponential diver-
gence of the two orbits X and X

′ and compute the finite time
maximum Lyapunov exponent54,55,63,64 (ftMLE),

χ =
1

t
ln

(

||v(t)||
||v(0)||

)

. (6)

Then, the system’s MLE χ1 is given as χ1 = limt→∞χ . The MLE
discriminates the system’s orbits in a straightforward way: χ1 > 0
means that the orbit is chaotic, while χ1 = 0 tells us that it is reg-
ular. In addition, we note that the inverse of the MLE, referred as
the Lyapunov time TL = 1/χ1, provides a timescale of the system’s
chaotization, giving an estimate of how long the system takes to
become chaotic.54
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We solve the equations of motion using a symplectic integrator
(SI). SIs are extremely advantageous integration schemes designed
especially for Hamiltonian systems as they exactly preserve the sym-
plectic nature of the Hamiltonian dynamics. One of their primary
advantages is that they keep the error of the computed energy
bounded and thus allow the utilization of a relatively large inte-
gration time step τ , even when integrating for long times. In our
study, we implement the ABA86465 split SI of order four, which
has proved to be very efficient66,67 for two-dimensional classical sys-
tems. The used integration time step τ = 0.06 ps keeps the relative
energy error | (H(t) − H(0))/H(0)| below 10−7 and allows us to per-
form efficient and accurate computations of the ftMLE χ (6) by
using orbit perturbations with ‖v(0)‖ ≈ 10−6. For lattices of a few
thousand atoms (as in most of the cases considered here), the dis-
placement components of v are thus on the order of 10−8 Å and
the velocity components similarly on the order of 10−8 Å/ps. These
are substantially smaller than the typical fluctuations in the posi-
tions and velocities of the atoms, which are on the order of 10−2Å
and 10−2 Å/ps, respectively, at the lowest energies considered here.
In our calculations of the ftMLE by the two-particle method, we
renormalize the deviation vector to its initially considered norm
value (‖v(0)‖ ≈ 10−6) after every picosecond in order to minimize
numerical roundoff and overflow errors. In addition, we carry out
integrations up to a final time, which is enough to ensure the con-
vergence of the MLE estimator in all our simulations. In most cases,
this time is tf = 105 ps, but for the lowest considered energy density
values, of h = 0.01eV and h = 0.05eV, for which the ftMLE shows
a slower saturation, as well as in the cases shown in Fig. 4, we use
a final time of tf = 106 ps. Computations were run in parallel using
OpenMP and GNU parallel.68

It is worth mentioning that our calculations are performed on
the microcanonical ensemble, where the system does not exchange
energy with the exterior. It is, therefore, more convenient to work
with the mean energy density parameter h = H/N, which acts as a
control parameter for our system, with N being the total number of
carbon atoms within the graphene shell.

III. NUMERICAL RESULTS

A. Periodic graphene

In order to investigate the chaotic nature of the graphene shell,
we consider a graphene sheet made of Ni = 60 vertical zigzag chains,
each possessing Nj = 48 carbon atoms. We further set periodic
boundary conditions along the zigzag chains [vertical direction in
Fig. 1(a)] and the armchair edges [horizontal direction in Fig. 1(a)]
to mimic a bulk system. As a good approximation of the natu-
ral composition of carbon materials, we primarily assume that the
graphene shell is entirely made of 12C isotopes.

Let us now explain how we estimate the system’s MLE. In Fig. 2,
we see the convergence of the ftMLE χ (6) obtained for ten differ-
ent sets of random initial conditions corresponding to a particular
energy density; in this case, h = 0.05 eV. Each set corresponds to
randomly selected values of ẋi,j(0) and ẏi,j(0), which are compatible
with the particular energy density h = 0.05 eV. From the results of
Fig. 2, we see that all curves practically overlap. After an exponential
decrease of the ftMLE at the earlier stages of the evolution, a con-
vergence to a value of χ ≈ 7.46 × 10−4 ps−1 is observed, confirming

FIG. 2. Time evolution of the ftMLE χ (6) for ten random initial conditions
for the bulk graphene system of N = Ni × Nj = 60 · 48 = 2880 atoms with
energy density h = 0.05 eV in a log–log scale. The different initial conditions pro-
duce very similar ftMLE values, and all ten curves practically overlap. Inset: A
magnification of the final stage of the ftMLEs’ evolution.

the chaotic nature of interactions in the graphene shell. In the inset
of Fig. 2, we see a magnification of the final stage of the ftMLEs’ evo-
lution, where the closeness of the results obtained from the different
sets of initial conditions is evident.

We emphasize that the results of Fig. 2 are actually indepen-
dent of the type of the used initial conditions. Different sets of
initial setups, such as single or group site excitations on positions,
momenta or both, produce practically the same results. In addition,
increasing the values of Ni and Nj does not affect the values of the
ftMLE for the same energy density.

In our investigations, we denote by χ̄ the average evolution of
the ftMLE (6) over all the considered initial conditions, while X1 rep-
resents the mean value of χ̄ over a time interval at the end of the
integration, where the values of χ̄ have practically saturated at an
almost constant value. The uncertainties in evaluating both χ̄ and
X1 are quantified by one standard deviation in the statistical process
of their obtainment.

Repeating the process of Fig. 2 for various values of the energy
density h, we obtain the results of Fig. 3 where the dependence of
the MLE estimator X1 on h is depicted. We see that for a graphene
sheet composed solely of 12C atoms (red squares), the MLE increases
with increasing energy density without showing any sign of a pecu-
liar behavior, characteristic of potential structural instabilities, even
at the largest values of h considered here. The error bars of the com-
puted points do not appear in the graph because of their extremely
small size. At small values of the energy density, up to h ≈ 0.1 eV,
the MLE is directly proportional to h. For h > 0.1 eV, a quadratic
correction adds to the linear initial behavior, giving rise to the
parabola-like behavior observed at higher energy densities. We have
fitted69 the obtained results with the quadratic function,

X1(h) = βh + γ h2, (7)
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FIG. 3. The average ftMLE X1 of the graphene system of Fig. 2 as a function
of the system’s energy per particle h. The red squares correspond to results for
graphene sheets composed solely of 12C isotopes, while the blue circles show
results for 13C atoms. The lines correspond to the analytical relation presented
in Eq. (7). The very small error bars of the X1 values (not visible at the plot’s
scales) means that the uncertainties of the measurements are very small. Inset:
The temperature T as a function of the energy density h for both 12C (red squares)
and 13C (blue circles). The straight line corresponds to the relation presented in
Eq. (8).

and obtained the values β = 0.014 47 ± 0.000 05 ps−1 eV−1 and
γ = 0.009 51 ± 0.000 08 ps−1 eV−2 for the 12C system (red curve).
These coefficients do not practically change when the system’s size
Ni and/or Nj increases. In addition, the results of MLE depicted
in Fig. 3 practically do not change if we include a 1.1% doping of
13C atoms into the graphene shell, which corresponds to its average
concentration in naturally occurring carbon materials. Indeed, even
for the extreme case of a lattice composed purely of 13C isotopes
(blue circles in Fig. 3), the obtained parameters are β = 0.013 89
± 0.000 04 ps−1 eV−1 and γ = 0.009 21 ± 0.000 07 ps−1 eV−2, which
are relatively close to their values observed for the 12C lattice. The
slightly smaller chaoticity of the 13C shell can likely be attributed to
the fact that 13C atoms have higher masses and, therefore, greater
inertia and consequent stability in the lattice.

In our simulations, the system’s Lyapunov time TL, i.e., the
inverse of the MLE, is on the order of 102–104 ps. Since the char-
acteristic frequencies of the optical phonon modes of the graphene
model58 are on the order of 1014 Hz, the corresponding vibrational
timescales are on the order of 10−2 ps. Comparing this with TL,
we see that in graphene, it takes more than 104 oscillations of the
high frequency modes before chaos sets in. Thus, chaotization is a
relatively slow process in graphene.

In the inset of Fig. 3, we see the validity of the linear relation,

h = 2kBT, (8)

between the energy density h and the temperature T (in kelvin—K),
with kB = 8.617 × 10−5 eV K−1 being the Boltzmann constant, of
the considered two-dimensional system even for the largest T or

h values investigated. The red squares and the blue circles corre-
spond to data obtained from our simulations for, respectively, the
12C and 13C graphene sheet, while the straight line represents Eq. (8).
We note that in our computations, we estimate the temperature T
as the mean value of the quantity Hc/(kBN), where Hc is the sys-
tem’s kinetic energy and N = Ni × Nj is the total number of carbon
atoms. This quantity is computed after the kinetic energy of the sys-
tem reaches an equilibrium, and it is averaged over time as well over
ten different initial conditions.

It is also of interest that the chaoticity in graphene does not
arise solely as a result of the potential’s nonlinearity, but the 2D
geometry itself is sufficient to produce chaotic behavior. This is
demonstrated in Fig. 4, where a comparison of the ftMLE com-
putation for different modifications of the full nonlinear system
at a relatively large energy density (h = 0.5 eV) is shown. We see
that chaotic behavior persists even when approximating the Morse
potential [Eq. (2)] as a harmonic coupling and only taking the
quadratic term from the bending potential in Eq. (3), i.e., setting
d′ = 0. The ftMLE of this system tends to a positive value (green
dotted curve in Fig. 4), which nevertheless is almost two orders of
magnitude smaller than the ftMLE of the full nonlinear system (blue
solid curve). In fact, due to the 2D geometry of the system, even if we
only consider a harmonic stretching interaction between neighbor-
ing atoms (omitting any angular terms), we observe a significantly
strong chaotic behavior (orange dashed curve). The comparison of
the orange and green curves in Fig. 4 clearly reveals the stabilizing
effect of the bending potential, as the addition of the quadratic angu-
lar potential significantly decreases the value of the MLE. It is worth
noting that the genuine linearization of the system, through first-
order approximations of the forces near the equilibrium state (red

FIG. 4. A comparison of the evolution of the average ftMLE χ̄ at h = 0.5 eV
considering various modifications of the used model. Results are shown for the
complete nonlinear potential of Eqs. (2) and (3) (blue solid curve), only harmonic
stretching and bending potentials (green dotted curve), solely stretching harmonic
coupling (orange dashed curve), and the pure linearized version of the total poten-
tial (red dashed–dotted curve). Each case is averaged over ten realizations. The
black curve indicates a function proportional to ln(t)/t (see the text).
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dashed–dotted curve), results in a decrease of the ftMLE toward
0 at a rate of ln(t)/t (denoted by the black solid curve in Fig. 4)
as expected for regular motions (see, e.g., Sec. 5.3 of Ref. 54 and
references therein).

B. Graphene nanoribbons

GNRs are finite width strips of graphene with free edges on the
two opposite sides defining the width. We model an armchair GNR
by considering periodic boundary conditions on the zigzag edges
[horizontal direction in Fig. 1(a)], while for the zigzag GNR, we apply
periodic boundary conditions into the armchair edges [vertical

FIG. 5. The MLE estimator X1 of (a) armchair and (b) zigzag nanoribbons as
a function of GNR’s width W , for different energy densities h. The horizontal
dashed lines asymptotically below each dataset represent the X1 value of a peri-
odic graphene sheet, with the same energy per particle, depicted in Fig. 3. The
solid curves correspond to the fitting of the data with the function of Eq. (9). Note
that once again, the error bars on the data points are extremely small and not
visible on the scale of the plot.

direction in Fig. 1(a)]. In both cases, free boundary conditions are
considered for the non-periodic edges.

Here, we investigate the influence of the GNR’s width W on the
chaoticity of the ribbon structure. The width of an armchair GNR
with Nj carbon atoms is WA =

√
3(Nj − 1)r0/2, while in the case

of a zigzag GNR with Ni atoms, the width is WZ = (3Ni/2 − 1)r0.
Figure 5 shows the variation of the MLE estimator X1 with W, at
various energy densities h for the armchair [Fig. 5(a)] and zigzag
[Fig. 5(b)] GNRs. For both nanoribbon types, the X1 values increase
with increasing energy densities, and larger values are observed
compared to the periodic graphene systems (see horizontal dashed
lines in Fig. 5). Overall, armchair GNRs exhibit a slightly more
chaotic behavior than zigzag GNRs.

For armchair GNRs, a decrease of X1 with W always appears,
meaning that wider GNRs are less chaotic and consequently more
stable. The same behavior is generally observed for zigzag GNRs as
well, apart from perhaps the one to two smallest values of W where
at some energy densities, a non-monotonic behavior can be found
[Fig. 5(b)].

In order to quantify our findings, the data of Fig. 5 are fitted
with a decreasing Hill function with an added constant term of the
form

X1 (W) =
A

1 + Wn
+ Xb

1, (9)

where the parameters A and n are free to be fitted, the ribbon width
W is expressed in nm in this formula, and Xb

1 is the estimated value
of the MLE of the bulk graphene sheet with periodic boundary

FIG. 6. Variation of the fitting parameters (a) A and (b) n of Eq. (9), with the
energy per particle h, for armchair GNRs (green squares) and zigzag ribbons
(blue circles). The lines connect the points to guide the eye.
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conditions corresponding to the particular energy density, as shown
in Fig. 3. Thus, Xb

1 represents a limiting value characterizing the
asymptotic behavior of Eq. (9), as one expects that at very large val-
ues of W, the GNR’s MLE should approach that of bulk graphene.
This expected behavior is evidently observed in the data of Fig. 5.

Figure 6 shows the variation of the fitting parameters A and n
of Eq. (9) with the energy density h. We see that the overall behavior
for the two GNR types is similar. The coefficient A increases with
the energy density, while it is generally larger in the armchair case.
This is in agreement with the larger range of X1 values observed for
armchair GNRs in Fig. 5. The exponent n decreases with h, reflect-
ing a less steep relative decrease of X1 with W for larger energy
densities. Armchair GNRs correspond to larger values of n than
zigzag GNRs of the same energy density, describing a relatively more
abrupt decrease in this case. Regardless of the value of n, there is
eventually a saturation of the MLE estimator X1 given in Eq. (9) at
the Xb

1 value obtained for the bulk graphene sheet.

IV. SUMMARY AND CONCLUDING REMARKS

Using a two-dimensional Hamiltonian model for describing
the dynamics of planar graphene structures, we investigated the
material’s chaoticity through the computation of the system’s MLE.
In our study, we have considered perfect graphene crystals, as well
as both zigzag and armchair graphene nanoribbons.

We found that in all cases, the MLE increases with the energy
density, and we showed that the MLE of graphene sheets does not
practically change in the presence of different carbon isotopes 12C or
13C in the structure. Chaos in graphene is revealed after more than
104 oscillations of the characteristic normal modes. Furthermore,
due to the 2D geometry of the system, even harmonic interaction
potentials between atoms are enough to produce chaos.

Our findings show that the edge effects from the free bound-
aries in the GNRs result in a more chaotic behavior than is observed
in the bulk structure. The MLE values of GNRs decrease as their
width increases, tending asymptotically to the values observed in the
case of the perfect graphene crystal. Furthermore, we have found
armchair GNRs to be slightly more chaotic than the zigzag ribbons.

We expect that the investigation of the chaotic behavior of
graphene structures performed in this work would be extended
in the future by considering the impact of various in- or out-
of-plane defects, where in the latter case, torsional energy terms
and out-of-plane motions of carbon atoms should be taken into
account.58,59
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